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Cuntz semigroups of C*-algebras of stable rank one and
projective Hilbert modules
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Abstract

Let A be a simple C*-algebra of stable rank one and let p and ¢ be two o-compact open
projections. It is proved that there is a continuous path of unitaries in A which connects open
sub-projections of p which is compactly contained in p to those in g. It is also shown that every
Hilbert module is projective in the category whose morphisms are bounded module maps
with adjoints. A discussion of projective Hilbert modules (whose morphisms are bounded
module maps) is also given.

Recently the Cuntz semigroups of C*-algebras have attracted some previously unexpected
attention. The Cuntz relations for positive elements in a C*-algebra was introduced by J.
Cuntz (see [9]). The Cuntz semigroups, briefly, are semigroups of equivalence classes of positive
elements in a C*-algebras. This relation is similar to the Murry and Von Neumann equivalence
relation for projections. The renew interests in the Cuntz semigroups probably begins with
Toms’s example ([20] ) which shows that two unital simple AH-algebras with the same traditional
Elliott invariant may have different Cuntz semigroups. It is a hope of many that the Cuntz
semigroups may be used in the classification of amenable C*-algebras. This note limits itself to
the clarification of a couple issues related to the Cuntz semigroups and its relation with Hilbert
modules.

While the Cuntz semigroups may be useful tools to distinguish some C*-algebras, they are
not necessarily easy to compute in general. One problem is that the Cuntz semigroup is not
a homotopy invariant. Let A be a C*-algebra and let f € C([0,1], A) so that f(¢t) > 0 for all
t € [0,1]. One easily sees that f(0) and f(1) are unlikely related in the Cuntz relation. On the
other hand, Cuntz introduced several versions of the relation among positive elements in C*-
algebras. These relations also give equivalence relations among open projections of C*-algebras.
It will be presented, following a result of L. G. Brown, if two o-compact open projections are
homotopy, then they are actually equivalent in (a strong) Cuntz relation.

Another homotopy question is whether two positive elements are homotopy in a suitable
sense if they are equivalent in the sense of Cuntz. Under the assumption that A is simple and
has stable rank one, it is shown in this note that two o-compact open projections are Cuntz
equivalent if and only if there is a continuous path of unitaries {u(t) : ¢t € [0,1)} which connects
these two open projections in the sense that will be described in and In particular,
any pre-compact open subprojection (see 2.7)) of p is unitarily equivalent to a pre-compact open
subprojection of q.

Let A be C*-algebra and let a,b € A® K. Then H; = aA and Hy = bA are two Hilbert
A-modules. Suppose that p, and p; are range projections of a and b in (A ® K)**. Then p, and
pp are Cuntz equivalent (see [[1]) if and only if H; and Hs are isomorphic as Hilbert A-modules.
So Hilbert modules and the Cuntz semigroups are closely related. In this note, using another
result of L. G. Brown, it is shown that p, is dominated by pp in the sense of Cuntz if and only
if there is a bounded module map T : Hy — H; (which may not have an adjoint) whose range
is dense in Hi. Projectivity of Hilbert modules have been recently brought into attention. In
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the last section of this note, quite differently from the pure algebraic analogy, it is shown that
every Hilbert module over a C*-algebra A is projective in the category of Hilbert A-modules
with bounded module maps with adjoints as morphisms. However, for Hilbert modules over
C*-algebra A, sometime the category of Hilbert A-modules with bounded module maps (may
or may not have adjoints) is also useful. To determine which Hilbert A-modules are projective
in that category is more difficult. A discussion on this problem will also be presented.

1 The Cuntz Semigroups

Definition 1.1. Let A be a C*-algebra and let a € A, . Denote by Her(a) = aAa the hereditary
C*-subalgebra of A generated by a. Denote by p, the range projection of a in A**. It is an open
projection of A in A**. Dnote Her(p) = pA*pN A = Her(a).

Suppose that a,b € A;. One writes a $ b if there exists x € A such that 2*z = a and
xzz* € Her(b). One writes a < b, if there exists a sequence r, € A such that r}br, — a in
norm. If a < b and b < a, then one writes a ~ b. The relation “~” is an equivalence relation.
The equivalence class represented by a will be written as (a). Denote by W (A) the equivalence
classes of positive elements in My (A) with respect to “~”. So

W(A)={(a) :a € M(A)}.

The semigroup W (A) is called the Cuntz semigroup. One can also define the same relation in
A ® K. The corresponding semigroup is denoted by Cu(A).

Let p and g be two open projections of M, (A) in M,(A)** = (M,(A*")) for some integer
n > 1 (or let p and g be two open projections of A ® K, where K is the C*-algebra of compact
operators on [2). One says that p and ¢ are Cuntz equivalent and writes p /., ¢, if there exists
a partial isometry v € M, (A)** (or v € (A ® K)**) such that

v*v =p, vv* =¢q and vav* € Her(q) for all a € Her(p).

b

The relation “~.,” is also an equivalence relation. The equivalence class represented by p will
be denoted by [p]. An open projection of A is said to be o-compact, if p = p, for some a € A.
Denote by Co(A) the equivalence classes of o-compact open projections of M, (A) in M, (A)**
for all n > 1. Denote by Co(A ® K) the equivalence classes of o-compact open projections of
A®K in (A® K)*™*. Note that M,(A® K) = A® K. These also form semigroups. One write
[p] < lgl, if p ~eu ¢ for some open projection ¢’ < q.

Let a,b € My (A) be two positive elements. Then [p,] < [py] if and only if a < b.
writes p ~¢, ¢ if [p] < [¢] and [¢] < [p]. This is also an equivalence relation. Denote by (p)
equivalence class represented by p.

These relations were first introduced by Cuntz (see [9]) and the readers are referred to [9],
[10], [2], [18] and [12] for more details.
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There are significant differences between W (A) and Co(A) (and differences between (Cu(A)
and Co(A ® K)) in general. An example that W(A) # Co(A) for stably finite C*-algebra was
given in [6]. Let A be a purely infinite simple C*-algebra and let a, b € A4\ {0}. Then (a) = (b).
Thus Cu(A) contains only zero and one other element. It is not quite useful in this case. On
the other hand, it follows from a result of S. Zhang [21] (see also Cor. 11 of [13]) that Her(a)
and Her(b) are stable and isomorphic if neither p, nor py are in A. In fact the isomorphism can
be given by an isometry. From this, one easily obtains the following.

Proposition 1.2. Let A be a purely infinite simple C*-algebra Then
Co(A) =V (A) U {o0},



where V(A) is the Murry-Von Neumann equivalence classes of projections in My (A) and oo is
represented by a non-zero o-compact open projection which is not in A.

However, W(A) and Co(A) could be often the same.

Definition 1.3. Let € > 0. Define

0 if t €0,¢/2]
fe(t) = { linear if t € [¢/2, €]
1 if t € [e,00).

Lemma 1.4. (G. K. Pedersen (Theorem 5 of [17])) Let A be a C*-algebra with stable rank one.
Suppose that © € A. Then, for each t € (0, |x||], there is a unitary u; € A such that

*
Uy PtUt = qt,

where py is the open spectral projection of |x| associated with (t, ||x||] and q; is the open spectral
projection of |x*| associated with (t,||z||], respectively. Moreover,

uppr = wpr and upypuy = q;
for all 0 <t <t < |zl

Proof. Note, by Theorem 5 of [17], since A has stable rank one, for each ¢t € (0, ||z||], there is
a unitary u; € A such that u;p; = vp;, where z = v|x| is the polar decomposition of = in A**.
Then

U Pt = Uy PrPt = VPPt = UPt = UtPt

for any 0 < t' <t < ||z||. In particular,
Uy Py = WPy = Gt
O

Proposition 1.5. Let A be a C*-algebra with stable rank one and let a,b € Ay be two positive
element. Then the following are equivalent.

(1) [pa] < [pel;
(2) a 30,
(3) aSo.

Proof. From the definition, (2) implies (3). It is also known that (1) and (2) are equivalent.
It remains to show (3) implies (1). To simplify notation, one may assume that A is unital,
0 < a,b < 1. Suppose (3) holds. Let {e,} be a strictly decreasing sequence of positive numbers
in (0,1] such that > 7, €, < 1/2.

By [18], there is a unitary w; € A such that

b1 = w1 fe, ja(a)wy < wlfel/lﬁ(a)wf =by € Her(b). (el.1)
Note that bjby = by. Let 21 = wl(f€1/4(a))1/2. Then
ri71 = fe /4(a) and x127] = by. (el.2)
There is a unitary wy € A such that

waw fe,/(a)wiwy = by € Her(b). (e1.3)

3



Denote a; = wows fe, j4(a)wiws. Note that a; € Her(b) and a1by = a1. Therefore

(b — Dwawy |z1|w] = ((be — 1)wown |1 |wiws)ws = 0. (el.4)
In other words,
bowow |z |w] = wowi |z |w]. (el.5)
Similarly,
wown |T1|wiby = wowy |T1|w}. (e1.6)

Therefore y; := wow; |x1|w] € Her(b). Moreover,
Yiyr = wizjriw] = zix] and y1y] = w2w1f61/4(a)wfw§. (el.7)
By applying [[4], one obtains a unitary z; € Her(b) such that

2161/4(’?41\) = ’w261/4(\ylf) = w2€1/4(’33ﬂ)= (e1.8)

where e; /4(|y1]) is the open spectral projection of |y1| = 27| associated with (1/4, 1]. Note that,

era(|21]) = eia(wife, jala)wy) (e1.9)
w1€1/4(f61/4(a))wf (e1.10)
= wes, (a)w] (e1.11)

where ey /4(fe, /4(a)) is the open spectral projection of f., 4(a) associated with (e/4, 1] and es, (a)
is the open spectral projection of a associated with (d1, 1] for some &1 € (e1/4, 3€¢1/8).
By (e1.8)) and (eI.I1),

Zjwawies, (a) = 2] (wawies, (a)w])w; (e1.12)
= zi(z1era(|z1]))wr = ey (|27 |)wn (e1.13)
= wies (a) (e1.14)

Define u; = w; and ug = zfwou; = 2jwow;, where one may view 2; as a unitary in A. It
follows, for any x € fs,(a)A, by applying (eI1.14), that

U = uges, (a)xr = zjwawieg, (a) = uies, (a)r = wz (e1.15)

Note also that ugyus € Her(b) for all y € Her(f.,s(a)), and f,(a) € Her(es, (a)).
By induction, for each n, one obtains a sequence of unitaries u,, € A such that

upyu, € Her(b) for all y € Her(f,,/s(a)) and (e1.16)
Un41Z = upx for all z € f (a)A (e1.17)

One then computes that

lim w,z. (e1.18)

n—o0

converges for every & € aA, which defines a unitary isomorphism U from aA into a Hilbert
sub-module of bA, which implies that [ps] < [pp).
O



Remark 1.6. There will be some discussion of Hilbert modules in the last section. A countably
generated Hilbert module may not have a countable dense set. Note that in Proposition [L5] A
is not assumed to be separable. The argument above can also be used to prove the following
theorem which was proved in [§].

Theorem 1.7. Let A be a C*-algebra of stable rank one and let a,b € Ay. Then the following
are equivalent:

(1) [pa] = [pl;

(2) (Pa) = (Po);

(3) (a) = (b).

In particular, Co(A) = W(A) and Co(A & K) = Cu(A).

2 Homotopy

It seems quite appropriate to begin with the following result of L. G. Brown ([3]).

Proposition 2.1. Let A be a C*-algebra and let p and q be two o-compact open projections of
A in A**. Suppose that there is a norm continuous path {p(t) : t € [0,1]} of o-compact open
projections such that

p(0) =p and p(1) = q. (e2.19)
Then [p] = [q].
Proof. Let 0 =ty < t1 <ty <---t, =1 be a partition such that
Ip(ti) — p(ti-)l <1/2, i=1,2,....;n.
It follows from (the proof of) 3.2 of [3] that
[p(t:)] = [p(ti=1)], i =1,2,.....,n. (2.20)

Thus [p] = [g-
O

Definition 2.2. Let A be a C*-algebra. An open projection g € A** is said to be pre-compact,
if there is a positive element a € Ay such that ga = ga = q. If p is another open projection and
if there is a € Her(p) such that ga = aq = ¢, then one says that q is compactly contained in p.

Lemma 2.3. Let A be a C*-algebra and let a € Ay. Suppose that ¢ € A™ is a projection for
which qa = aq = q. Then, x(1,|jq|1(@)q = q.

Proof. Let s > 1. Denote by p(s |4 the spectral projection of a in A*™ corresponding to the
interval (s, [la||]. Since ga = aq, ¢ commutes with pg 4. In particular, gp(s o)) is @ projection.
However, gp(s|q)) = 0. Otherwise

1 < s <|lgap(s,jayll < llagll = llql| = 1. (e2.21)
It follows that
qp(17||a|” =0. (e 2.22)

Let 0 <r <1 and pjg,] = X[o,](a) be the spectral projection corresponding to the interval
[0,7]. The assumption that ga = ag = ¢q implies that

P09 = qPjo.r]- (e2.23)
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It follows that

q = aq < rpoq + ap(ja))q < TP+ P14 < Plod + Per1)d = G- (€2.24)

It follows that

TP[0,r]9 = P[o,r]q- (e2.25)

Therefore

Po.rq = 0. (e2.26)

Since this holds for each r € (0, 1), one concludes that

q=paq = x{3(a)g =q. (e2.27)
O

Definition 2.4. Let p be a o-compact open projection of A which is not in A. Let a € Her(p) be
a strictly positive element. Then 0 must be a limit point of sp(a). Let t,, € (0, ||al|] be such that
tn \( 0. Let pg ,, be the open spectral projection corresponding to (ty, [|al[]. Then f;, 2(a) > prn,
So pk n is a sub-pre-compact open projection of p. Note that {px, : n = 1,2,...} is increasing
and

nlgn;o PKn =D

in the strong operator topology in A**. Such a sequence {px ,} is called a pre-compact support
of p.

In the proof of 2.5] and 27 the result of L. G. Brown and G. K. Pedersen (3.6 of [5])
that every hereditary C*-subalgebra of a C*-algebra of stable rank one has stable rank one will
be used without repeating this reference.

Lemma 2.5. Let A be a simple C*-algebra of stable rank one and let x € A. Suppose that
x = v|z| is the polar decomposition of x in A**. Suppose also that 0 is not an isolated point in
sp(x). Then, for any § > 0, there is a unitary u € A with [u] =0 in K;(A) such that

upy = vpy for all t € [0, ||z|]], (e2.28)

where py is the spectral projection of |x| corresponding to (t, ||x||].

Proof. Tt follows from [[4 that there is a unitary us € A such that
uspr = vpy for all ¢ € [0, ]|z]]]. (€2.29)

Since 0 is not an isolated point in sp(z), there are 0 < ¢’ < ¢ < § such that pg ) # 0, where
pw ) is the spectral projection of |z| corresponding to (¢',t"). Note that p( ) is an open
projection of A. Let B =H er(p(t/7t//)). Then B has stable rank one. Since A is also simple, the
map K;(B) — Ki(A) induced by the inclusion is an isomorphism. Therefore there is a unitary
v € B such that [v] = [u3] in K1(A). One may write v = z + A, where z € B and X € C. Let
7 : B — C be the quotient map. Then m(v) = A. It follows that |A| = 1. Put v; = Av = Az + 1.
Note that

zpy =0 for all t € (0, [|z|]] and [v1] = [v] = [uz] in K;(A). (€2.30)



One may view v1 as a unitary in A. Now set u = ugvi. Then,

upy = usvip; = us(Az + 1)p; (e2.31)
= Uspt = Pi (e2.32)

for all ¢t € [0, ||z]]].
O

Theorem 2.6. Let A be a simple C*-algebra with stable rank one. Suppose that p and q are
two o-compact open projections of A such that [p] = [q]. Then, there is a precompact support
{prn} of p, and there is a continuous path of unitaries {w(t) : t € [0,1)} C A satisfying the
following: w(0) =1, for any n, there is t,, € (0,1) such that

w(t)prpw(t)" = w(tn)prpw(ty)” for all t € [t,,1) (€2.33)
and {w(ty) prw(ty)} is a precompact support of q. Moreover,
w(t)prn = At)w(tn)PKn (€2.34)
for some \(t) € C if t € [tp,1).

Proof. Suppose that [p] = [¢]. If p is a projection in A, so is ¢. Then the result follows from a
theorem of L. G. Brown (Theorem 1 of [4]).

So, one now assumes that neither p nor ¢ are projections in A. Let a € Her(p) be a strictly
positive element. Let px, be the spectral projection of a associated with (1/2"!,||a||]. Then
{pK n} is a precompact support for p. Suppose that w € A™* such that

w'w = p, ww* = ¢ and wbw* € Her(q) for all b € Her(p). (€2.35)
Put z = wa'/?. Then z2* = waw* is a strictly positive element of Her(q).

Put 51 = 1/\/5, Sp = 1/2"_1, n = 1,2,.... Since one assumes that p is not a projection in
A, 0 is a limit point of sp(a1/2). Let ps, be the open spectral projection of |z| = a'/? associated
with (s, ||z|]]. Then ps, = prn, n = 1,2,.... Let t, = s, — s,/16™ and let p;, be the open
spectral projection of |z| associated with (¢, ||z]|]], n = 1,2, ....

It follows from (see also [[4) that there is a unitary u, € A with [u,] = 0 in K;(A) such
that

Um P, Uny, = Gt,, a0 Uy = Uppy, if m >yt > tp,mym =1,2, ..., (2.36)

where ¢, is the open spectral projection of |z*| associated with (¢, ||z*||].
Denote by gs,, the spectral projection of |z*| associated with (sp, [[z*[]], n = 1,2,.... Since

[u1] = 0 in K;(A) and A has stable rank one, by a result of Rieffel ([19]), u1 € Up(A). Therefore
there is a continuous path of unitaries {w(t) : t € [0,¢1]} C A (0 < t; < 1) such that

w(0) =1, and w(t1) = uy. (e2.37)
On also has that
uguiqy, = uguj(u1p uy) (e2.38)
UPpy U = WP U = Gty (e2.39)
= UIPy, U] = U2y, U] = UaPy, Us(ugul) = qpy (uguy). (e2.40)



Moreover,
* % k * * * *
uu] g, (ugul)™ = ugul (u1pr,ul ) uruy = uspPr,us = G, . (e2.41)

Let €1 = p(o,(t,+s1)/2) the spectral projection of |z| corresponding to (0, (t; + s1)/2) and let
C = Her(e1). By (e2.39) and (e2.40)), one may view uguj as a unitary in C. Since C' has stable

rank one and [ugu?] = 0 in K1 (A), one obtains a continuous path of unitaries {W (t) : [t1, 2]} € C
(t1 < t2 < 1) such that

W(t1) =1 and W(ta) = uguj. (e2.42)
Note that
gs,e1 = e1qs; = 0. (e2.43)
W (t) may be viewed as unitaries in A. Moreover, by (€2.43),
W(t)gs, = A(t)gs; = g, W (2) (e2.44)

for some A(t) € C for all ¢ € [t1,t2]. Now extend w(t) from a continuous path from [0, ;] to a
continuous path from [0, 2] by defining

w(t) = W(t)w(tl) for all t e [tl,tg]. (e 2,45)
Note that
w(t2)p52w(t2)* = (s, and w(t)pslw(t)* = (s, (e 2.46)
for all t € [t1,t2]. Moreover, by (e2.44),
w(t)ps, = Ww(t)ps, = W(t)w(ty)ps, w(tr) w(ty) (e2.47)
= W(t)QS1w(t1) = )\(t)QSlw(tl) (e 2.48)
= MNt)w(t1)ps,w(t) w(t1) = Nt)w(t1)ps, - (€2.49)
Furthermore,
w(t2) = upujw(ts) = ugujug = ua. (e2.50)
One also has that
uzw(ta) qr, = UUSGLUUG = UZPLUS = UPr U5 = Gy (e2.51)
= Uapy,us = usprus(usuy) = qp, (usw(te)”), and (e2.52)
usw(te) quw(t)us = usw(te)” (w(te)pw(te)*)w(ta)us (e2.53)
= U3PL U3 = Qg (e2.54)

Therefore, by induction, one obtains a continuous path of unitaries {w(t) : t € [0,1)} of A such
that

w(0) = 1, w(tn)ps,w(tn)” = gs, and (e2.55)
w(t)ps, w(t)* = qs, for all t € [t,,1). (e2.56)
Moreover,
w(t)ps, = A(t)w(t,)ps, for all t € [ty,1) (e2.57)
for some A(t) € C.
O



Corollary 2.7. Let A be a simple C*-algebra with stable rank one and let a, b € AL. Suppose
that [pa] < [pp]. Then, for any ¢ € Her(a)y which is compactly contained in p,, there exists a
continuous path of unitaries {w(t) : t € [0,1]} such that w(0) =1 and w(1)*p.w(1) is compactly
contained in pp.

Proof. Suppose that ¢ € Her(p,)+ which is compactly contained in Her(p,) in the sense that
there is d € Her(p,)+ such that cd = c. Then, for any € > 0, there is an integer n > 1 such that

| f1/n(a)d —d| < €/2. (e2.58)
It follows from [I§] that
f(d) £ fijn(a). (€2.59)
Since A has stable rank one, then there exists v € A such that v* f.(d)v < fin(a). By 23]
cfe(d) =c. (e2.60)

Let p. be the range projection of ¢ in A**. Then, v*p.v < pg . Since A is simple and has stable

—_—

rank one, there is vg € Her(p.) such that
[vo] = [v*] in Ki(A). (e2.61)

One may also view v as a unitary in A. There is a continuous path of unitaries {wo(t) : t €
[0,1]} € A such that

wp(0) = 1, wo(1) = vov. (€2.62)
Then
wo (1) pewo(1) = v*pev < pK - (€2.63)

Now the lemma follows from
O

Proposition 2.8. The converse of Theorem also holds in the following sense. Let A be
a C*-algebra and let p and q be two o-compact open projections of A. Suppose that there is a
continuous path of unitaries {w(t) : t € [0,1)} C M(A) such that, w(0) = 1, for any n > 1,
there is t,, € (0,1) such that

w(t)prpw(t)" = w(ty)praw(ty)” for all t € [t,, 1), (e2.64)

where {pr n} is a precompact support for p and {w(t,) prnw(tn)} is a precompact support for
q. Moreover,

w(t)prn = ANt)w(tn)prn for all t € [t,, 1) (€2.65)

for some A(t) € C.
Then [p] = [q]

Proof. One may assume that ¢,41 > t,, n = 1,2,.... Suppose that a € Her(p) is a strictly
positive element and suppose s, € (0, |la|]] such that s, \, 0 such that pg, is the spectral

projection of a corresponding to (sp, ||a||], n =1,2,.... One defines, with px o =0,
o
v= Z w(tn)(PKn — PKn—1)- (€2.66)
n=1



One checks that, for b € Her(p),

n+m

Jim | k§_j w(tn) (prcn — Prcn-1)b] = 0. (e2.67)

It follows that v € A**. One also checks that

Zw(tn)(pl(,n _pK,n—l)w(tm)* (e 268)
n=1
= Z A(tm)w(tm) (P m — PKn—1)W(tm)* (2.69)
n=1
= A(tm)w(tm)pK,mw(tm)* = )\(tm)QK,m- (e 270)

Let a, = ft,(a), n =1,2,... Then, if m >n+1,

Vvt = Mtm) @ mw (tm)anw(tm)* qcmMtm) (e2.71)
= w(tm)anw(t,)* € Her(q). (€2.72)

Let € > 0 and b € Her(p). There is n > 1 such that
|b — amban,| < € for all m > n. (e2.73)
Then,
|vbv™ — vamban,v*|| < e. (e2.74)
But, by (€2Z72)), vay,bay,v* € Her(p). This implies that vbv* € Her(p). Furthermore,
v pu = q. (e2.75)
O

Remark 2.9. If A is a unital C*-algebra and p,q € A are two projections which are homotopy,
i.e., there is a projection P € C([0,1],A) such that P(0) = p and P(1) = ¢g. Then (see, for
example, Lemma 2.6.6 of [16]), there is a unitary U € C([0,1], A) such that U(0) = 1 and
U(t)*pU(t) = p(t) for all ¢t € [0,1]. In 26l and in 28] for each n > 1, there is a continuous path

{p(t) = w(t)"prpw(t) : t €[0,1)}
of open projections such that
p(0) = pr,n and p(t) = gk, for all t € [t,,1).
In particular, there is a unitary, namely u(t,) € A or in M(A) in 2Z8), such that
u(tn) Prnu(tn) = qrp, =12, ... (€2.76)

In general, however, if [p] = [q] in the sense of Cuntz, there may not be any unitary path
{w(t) : t € [0,1]} for which w(0)*pw(0) = p and w(1)*pw(l) = ¢, as one can see from the
following.

Proposition 2.10. Let A be a non-unital and o-unital non-elementary simple C*-algebra with
(SP). Then there are two o-compact open projections p and q of A such that [p] = [q] but there
are no unitary u € M(A) such that u*pu = q.
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Proof. Let a € A4 be a strictly positive element. Then 0 is a limit point of sp(a). Thus A
admits an approximate identity {e,} such that e,ie, = e,, n = 1,2,.... One may further
assume, without loss of generality, by passing to a subsequence if necessary, there are nonzero
positive element b, € Her(ey,11) — €2n) With ||b,[| =1, n = 1,2,.... In particular,

bibj =0 if i # j. (e2.77)

On the other hand, since e; Aeq is a non-elementary simple C*-algebra, by a result of Akemann
and Shultz [1], there are mutually orthogonal non-zero positive elements ¢y, co, ..., ¢y, ... in €1 Aey.
Since A has (SP), there are non-zero projections d], € Her(c,), n =1,2, ....

By a result of Cuntz (see (2) of Lemma 3.5.6 of [16], for example), there are partial isometries
T1,%2, ..., T, ... € A such that

xix; € Her(¢;) and x;x; € Her(b;), (e2.78)
where x7x; and x;x] are non-zero projections, 1 = 1,2, ....
Put d,, = zpx;, and f, =z} xy, n =1,2,.... Define
bzzn—g and c:zn—g. (e2.79)
n=1 n=1
Then b,c € A. Define x =", £2. Then
z*x =0b and zz* =c. (€2.80)

Let p = p, the range projection of ¢ in A** and let ¢ = py, the range projection of b in A**. Then,
by (e2.80), [p] = [q]. Moreover cez = ¢. So ¢ is compact. Furthermore, since f,, < (€a(n41) —€2n);
n=12,..,

4= fu (e2.81)
n=1

where the sum converges in the strict topology. It follows that ¢ € M(A).

Now suppose that there were a unitary u € M(A) such that u*qu = p. Therefore u*qu €
M(A). However p ¢ M(A). Otherwise pe; = p implies that p € A. But p ¢ A. So there is no
unitary u € M(A) for which u*qu = p.

O

Remark 2.11. In the proof of 2,10} one notes that p is precompact and is compactly contained
in pe,. However, ¢ is not precompact and is not compactly contained in any o-compact open
projection of A. In fact, if ¢ < a for some a € A, then g € A since ¢ € M(A). One concludes
that precompactness is not invariant under the Cuntz relation.

Finally, to end this section, one has the following:

Proposition 2.12. Let A and B be two separable C*-algebras, and let pg,p1 : A — B be two
homomorphisms. Suppose that there is a homomorphism H : A — C([0,1], B) such that mpoH =
wo and m o H = 1, where 7, : C([0,1], B) — B is the point-evaluation at the point t € [0, 1].
Suppose also that H extends to a (sequentially) normal homomorphism H' : A** — C([0,1], B**)
in the sense that if {a,} C Asq is a increasing bounded sequence with upper bound x € A**,
then {H (ay)} has the upper bound H'(z). Then pg and p1 induce the same homomorphism on
the Cuntz semigroups W (A) and Co(A).
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Proof. Let p be an open projection of A. Since A is separable, p is o-compact. Let a € A such
that p is the range projection of A. Then {a!/"} is increasing and has the upper bound p.

Put p(t) = w0 H'(p), t € [0,1]. It is a norm continuous path of o-compact open projections.
It follows from 2.1] that [p(0)] = [p(1)]. In other words,

[o(p)] = [1(p)]- (€2.82)

0

3 Hilbert Modules

From the definition (see [[I]), two o-compact open projections p and g of a C*-algebra A are
Cuntz equivalent if and only if the corresponding Hilbert A-modules are isomorphic as Hilbert
A-modules. When A has stable rank one, by [8] (see also [[.7]), two positive elements a and b in
A are Cuntz equivalent if and only if the associated Hilbert A-modules are isomorphic as Hilbert
A-modules. A question was mentioned in [8] (see line 27 of page 187 of [§]) whether a and b are
Cuntz equivalent if the Banach A-modules aA and bA are isomorphic as Banach modules. This
question will be answered by a result of L. G. Brown below (3.1l and [3.2)). Recently, related to
the Cuntz semigroups, projective Hilbert modules also attract some attention (see [6]). In this
section, these two issues will be discussed. We begin with the following definition.

Let A be a C*-algebra. For an integer n > 1, denote by A the Hilbert A-module of
orthogonal direct sum of n copies of A. If z = (ay,as,...,ay),y = (b1, b2, ..., by,), then

n
<x,y >= Za;bn.
i=1

Denote by Hy4 the standard countably generated Hilbert (right) A-module

k
Hy={{a,}: Z aya, converges in norm},

n=1

where the inner product is defined by

< A{an}, {bp} >= Za;bn.
n=1

Let H be a Hilbert A-module. denote by H* the set of all bounded A-module maps from H
to A. If Hy, Hy are Hilbert A-modules, denote by B(H;, Hs) the space of all bounded module
maps from Hy and Hy. If T € B(H;, Hz), denote by T : Hy — Hlﬁ the bounded module maps
defined by

T*(y)(x) =< Tz,y > for all z € H; and y € Hs.

If T* € B(Hs, H;), one says that 7" has an adjoint T™*. Denote by L(Hj, Hs) the set of all
bounded A-module maps in B(H;, Hy) with adjoints. Let H be a Hilbert A-module. In what
follows, denote B(H) = B(H,H) and L(H) = L(H,H). B(H) is a Banach algebra and L(H) is
a C'*-algebra.

Denote by F(H) the linear span of those module maps with the form ¢ < (,— >, where
&, € H. Denote by K(H) the closure of F(H). K(H) is a C*-algebra. It follows from a
result of Kasparov ([I1]) that L(H) = M (K (H)), the multiplier algebra of K(H), and, by [14],
B(H) = LM (K(H)), the left multiplier algebra of K (H).
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Two Hilbert A-modules are said to be unitarily equivalent, or isomorphic, if there is an
invertible map U € B(Hj, Hs) such that

< U(x1),U(xz2) >=< 1,29 > for all 1,29 € Hy.

The following result of L. G. Brown becomes quite useful and answers the question in [§]
mentioned above.

Theorem 3.1. (Theorem 3.2 of [3] and Theorem 2.2 of [15]) Let H; and Ha be two countably
generated Hilbert modules over a C*-algebra A. Suppose that there is T € B(Hy, Hs) which is
one-to-one and has dense range. Then Hy and Ho are unitarily equivalent.

Remark 3.2. However, it is also worth to note that the above statement fails when H; and Ho
are not countably generated. See Example 2.3 of [15].

As a consequence, one has the following.

Proposition 3.3. Let A be a C*-algebra and let a,b € A. Suppose that H; = aA and Hy = bA.
Then [pq] < [pp) (or equivalently, a < b) if and only if there is T € B(Haz, H1) whose range is
dense in Hy.

Proof. Suppose that [p,] < [ps], i.e., there is a partial isometry v € A™* such that
v'pav < pp and v*xv € Her(b) for all x € Her(a). (€3.83)

Thus v*H; C Ho. Put Hy = v*H; and ¢ = v*av. Then ¢ € K(H3). It follows from Lemma 2.13
of [15] that one may view K (Hs3) as a hereditary C*-subalgebra of K(H;). Thus T' = vc defines
a bounded module map in B(Ha, Hy). Note T' = av and vHy = Hj. It follows that T has the
dense range.

Now one assumes that there is ' € B(Hq, H1) whose range is dense in H;. One may identify
T with an element in LM (Her(b), Her(a)). Let x = (Tb)*Tb. Then x € Her(b). Let Hy = T A.
Then T is one-to-one on Hy and has dense range. It follows from Bl that Hy and H; are
unitarily equivalent which provides a partial isometry v € A** such that

vaA = zA and, for £ € aA, v€ =0 if and only if £ =0 (e3.84)

Let r = p,. Then
vpavt =1 < pp and v€V* € Her(z) C Her(b) for all £ € Her(a). (e3.85)
O

Now we turn to the projectivity of Hilbert modules.

Theorem 3.4. Let A be a C*-algebra. Then every Hilbert A module is projective (with bounded
module maps with adjoints as morphisms) in the following sense: Let H be a Hilbert A-module.

(1) Suppose that Hy is another Hilbert A-module and suppose that ¢ € L(Hy,H) is a sur-
jective. Then there is ¢ € L(H, Hy) such that

ot =idpm; (e3.86)

(2) Suppose that He and Hs are Hilbert modules and suppose that @1 € L(Hs, Hs) is surjec-
tive. Suppose also that @y € L(H, Hs). Then there exists ¢ € L(H, Hy) such that

P10y = pa. (e3.87)
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Proof. For (1), one first notes that ¢ has closed range. Define T': H1 & H — H; & H by
T(hy®h) =08 T(hy) for hy € Hi and h € H. Then T € L(H; ® H) = M(K(H; ® H)). It
follows from Lemma 2.4 of [15] that

H, & H =kerT & |T|(H; @ H). (e 3.88)

Let T' = V|T| be the polar decomposition in (K (H; & H))**. Note that the proof of Lemma 2.4
of [I5] shows that 0 is an isolated point of |T'| or |T'| is invertible. So the same holds for (T7%)'/2.
Let S = (TT*)~!, where the inverse is taken in the hereditary C*-subalgebra L(H) C L(H1®H).
Since T is surjective,

|TT*|H = H. (3.89)
Moreover,
Ly = V¥(TT*)~Y2 = v*(TT*)"Y2S € L(H, ® H). (3.90)
One then checks that
TLy = V|T|V*(TT*)~Y2 = P, (e3.91)

where P is the range projection of (TT*)I/ 2 which gives the identity of H. One then defines 1)
by Ly. Thus ¢ oy = idy.
For (2), one applies (1). Since ¢; is surjective, by (2), there is @3 € L(Hs, Ha) such that

P13 = idpy. (€3.92)

Define 9 = 1 0 43 0 pa.
O

Remark 3.5. A discussion about injective Hilbert modules can be found in [I5]. It was shown
that, for example, a Hilbert A-module H is injective (with bounded module maps with adjoints
as morphisms) if and only if it is orthogonally complementary (Theorem 2.14 of [I5]). For a full
countably generated Hilbert module, it is injective (with bounded morphisms with adjoints as
morphisms) if and only if L(H) = B(H) (see 2.9 and 2.19 of [15]).

Let A be a C*-algebra. One may consider the category of Hilbert A-modules with bounded
A-module maps as morphisms. A discussion on the question which Hilbert A-modules are
injective in this category was given in [15]. It seems that question which Hilbert A-modules
are projective in this category is much more difficult. Consider a Hilbert A-module H = £A
which is singly algebraically generated. Let H; be another Hilbert A-module and T' € B(Hy, H)
is surjective. Suppose that = € H; such that T'(z) = £. It would be most natural to define
S : H — Hy by S(§) = = which gives T'S(y) = y for all y € H. The trouble is that it is not clear
why S should be bounded.

Noticing the difference between algebraically projective A-modules and projective Hilbert
A-modules (with bounded module maps as morphisms), the following two propositions may not
seem entirely trivial. The first one is certainly known. After this note was first posted, Leonel
Robert informed the author that, using Proposition [B.4labove, he has a proof that the converse of
the following also holds, i.e., if H is algebraically finitely generated, then K (H) has an identity.

Proposition 3.6. Let A be a C*-algebra and let H be a Hilbert A-module. Suppose that 1p €
K(H). Then H is algebraically finitely generated.
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Proof. Let F(H) be the linear span of rank one module maps of the form £ < {,— > for &, ( € H.
Then F(H) is dense in K(H). There is T' € F(H) such that

|1n — T <1/4, (€3.93)
One may assume that |T'|| < 1. Thus
1y — T*T| < 1/2. (e3.94)

It follows that 0 < T*T < 1y and T*T is invertible. Note that T*T € F(H). Therefore there
are 617 527 CEES) gna Clv C27 ceey Cn € H such that

T*T(€) = & <, &> for all £ € H. (e3.95)
j=1

But 7*T'H = H. This implies that > 7, {;A = H.
[l

Proposition 3.7. Let A be a C*-algebra and let H be a Hilbert A-module for which K(H) has
an identity. Then H is projective Hilbert A-module (with bounded module maps as morphisms).

Proof. One first assumes that A has an identity. From [B.6] H is finitely generated. Therefore,
a theorem of Kasparov shows that H = PHy4 for some projection P € L(H,). The fact that
1y € K(H) implies that P € K(Hy). Therefore there is an integer N > 1 and a projection
P, € My(A) such that PH is unitarily equivalent to PyH 4. In other words, one may assume
that H is a direct summand of AN, Suppose that H; and Hy are two Hilbert A-modules and
suppose that S € B(Hy, Hs) is surjective and suppose that ¢ : H — Hs is a bounded module
map. Since H is a direct summand of A there is a partial isometry V e L(H JAWN )) such
that P,V = idy. Let T = ¢ o P;. Denote by e; the vector in the ith copy of A given by 14.
Choose g1, g2, ..., gn € Hj such that Sg; = Te;, i = 1,2, ...,n. Define L : K(AN) @ Hy) by

N
L(h@®h) =) gi<e,h> for all he H and hy € Hy. (3.96)
j=1

Define Ly = L|y. For h = Zﬁvzl e;a;, where a; € A, one has

N N
SLl(h) = S(Zgz < e h >) :ngi < e, h> (6397)
=1 =1
N N
= ZTGZ < e, € > a; = ZTGiCLi (e 398)
Jj=1 Jj=1
— T(h). (¢3.99)

Define Ly € B(H,H;) by Ly = Ly o V. Then
SLy=SLi1oV=ToV =poPoV =¢. (e3.100)
Moreover, if S; € B(Hi, H) is a surjective map, consider the following diagram:

H
Lidy
H; —S H — 0
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From (ii), there is a bounded module map L : H — H; such that
SlL = idH. (e 3.101)

For general case, one may consider H as a Hilbert A-module.
O

Remark 3.8. The fact that < e;,e; >= 14 is crucial in the proof. It should be noted that,
when A is not unital, the above argument does not imply that A™ is projective (with bounded
module maps as morphisms).

Corollary 3.9. Let A be a unital C*-algebra and let H be a Hilbert A-module. Suppose that
there is an integer n > 1 and a surjective map S € B(A("),H). Then H is projective (with
bounded module maps as morphisms)

Proof. Let Hy and Hy be two Hilbert A-modules and let ¢ € B(Hp, He) which is surjective.
Suppose that ¢ € B(H, Hs).

Since A™ is self-dual, S* must map H into A™. In other words, S € L(A(”), H). By B4l
there exists T' € L(H, A"™) such that

ST = idy. (3.102)
Let 1 € B(A™ | Hy) be defined by
o1 =¢oS. (e3.103)
Then, by B77, A™ is projective. There is L € B(A™, H,) such that
ol =y (e3.104)
Define g = Lo T. Then ¢y € B(H, Hy). Moreover,
pows = woLoT=¢poSoT = . (€3.105)

Hence H is projective (with bounded module maps as morphisms).
O

There are projective Hilbert modules (with bounded module maps as morphisms) for which
K (H) is not unital.

Theorem 3.10. Let A be a separable C*-algebra such that LM (A®QK) = M(A®K). Then every
countably generated Hilbert A-module is projective (with bounded module maps as morphisms)

One needs the following lemma which the author could not locate a reference.

Lemma 3.11. Let X be a Banach space and let H be a separable Banach space. Suppose that
T: X — H is a surjective bounded linear map. Then there is a separable subspace Y C X such
that TX = H.

Proof. Note that the Open Mapping Theorem applies here. From the open mapping theorem
(or a proof of it), there is 6 > 0 for which T'(B(0,a)) is dense in O(0,ad) for any a > 0, where
B(0,a) ={z € X : ||z|| < a} and O(0,b) = {h € H : ||h|| < b}. For each rational number r > 0,
since H is separable, one may find a countable set E, C B(0,r) such that T'(E,) is dense in
O(0,76). Let Y be the closed subspace generated by U,eq, E;.
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Let d = ¢/2 and let yo € O(0,d). Then T(Y N B(0,1/2)) is dense in O(0,d). Choose & €
Y N B(0,1/2) such that

lyo — T || < 6/2°. (e3.106)
In particular,
y1 = yo — T& € 0(0,6/2%). (€3.107)
Since T(Y N B(0,1/22)) is dense in O(0,5/2?), one obtains & € Y N B(0,1/22) such that
lyr — Téa|| < 6/2°. (e3.108)
In other words,
Yo = y1 — Ty = yo — (TE1 + TE) € 0(0,5/2%). (e3.109)

Continuing this process, one obtains a sequence of elements {{,} C Y for which &, € B(0,1/2")
and

lyo — (T€1 +Téq + - -+ TE)|| < 6/2", n=1,2,.... (€3.110)

Define §y = Y .2, &,. Note that the sum converges in norm and therefore §; € Y. By the
continuity of T,

T'€ = yo. (e3.111)
This implies that T'(Y") D O(0,d). It follows that T'(Y) = H. O

Proof of Theorem

Let H be a countably generated Hilbert A-module. Suppose that H1 and Hy are two Hilbert
A-modules, suppose that ¢ € B(Hy, Hy) and v € B(H, Hs). Suppose also that ¢ is surjective.

Let Hs = 9(H). Then Hj is countably generated. Since A is separable, Hj is also a separable
Banach space. By [B.11] there is a separable subspace Y C Hp such that TY = Hs. Let Hy be
the Hilbert A-module generated by Y. Then Hy is countably generated.

Let Hy= Hy ® Hy ® H3 @ H. Then, by a result of Kasparov ([11]), Hy = H 4. Define

\I/(h() @D hys®hs®h) =1(hy) and ®(hg ® hy © hy B h) = ¢(h) (e 3.112)

for all hg € Ha,hy € Hy,hs € Hz and h € H. Note that ¥ is from Hj onto Hs.

By the assumption that LM (A ® K) = M(A ® K) and by Theorem 1.5 of [I4] and [I1],
U, & € L(Hy). It follows that ¢|g, € L(Hy, Hs) and ¢ € L(H, H3). By B4, there exists ¢ €
L(H, Hy) such that

popr =1 (e3.113)

Lemma 3.12. Let A be a C*-algebra and let H be a Hilbert A-module. Let Hy C H be a Hilbert
A-submodule. Suppose that {eq} is an approximate identity for K(Hp) and suppose that & € H.
Then

I (O = T [|(1 = ea) (€], (e3.114)

where w: H — H/Hy is the quotient map.
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Proof. Note that
[ ()]l = inf{]|€ +¢]| : ¢ € Ho}-

It follows from Lemma 2.13 of [15] that K (H() may be regarded as a hereditary C*-subalgebra
of K(H).
Let € > 0. There exists ( € Hp such that

[ = N1€ + <l —e/2. (e3.115)
There exists «g such that
(1 —ea)(C)]] <€e/4 for all a > ap. (3.116)

Note that 0 <1 — e, <1 for all «. Therefore

I = €+l —€/2 21— ea)(§ + Ol — /2 (e3.117)
> (1= ea)( )l = [I(1 = ea) ()]l — €/2 (e3.118)
> [[(1=ea)©ll —e (€3.119)

Let € — 0,
17O = (1 = ea)(§)]| for all o> . (€3.120)
It follows that
I7 () = lim [[(1 = eq)(E)]]- (e3.121)
Since e4(¢) € Hy for all a,
I (I < lim [[(1 = ea)(E)]]- (e3.122)

The lemma follows from the combination of (€3.121]) and (e3.122]).
O

Remark 3.13. Suppose that H; and H are Hilbert A-modules and ¢ : H; — H is a bounded
surjective module map. Let Hy = keryp. It is a Hilbert submodule of Hy. Let = : Hy — H;/H
be the quotient map. It is a Banach space. There is a bounded linear map ¢’ : Hy/Hy — H
such that ¢’ o™ = . Since ¢’ is one-to-one and onto, it has an inverse. In what follows denote
by ¢~ : H — H/Hj the inverse which is also bounded.

Let p be the open projection of K(H;) corresponding K (Hy). Then H/Hj may be identified
with (1 — p)H which can also be made into a Banach A-module.

Lemma 3.14. Let A be a C*-algebra and let H be a Hilbert A-module. Suppose that &1,&o,...,&, €
H and ey, e, ...,e, € Ay are in the center of A with 0 <e; <1 (i =1,2,...,n) such that

€i€j = €5€; = 0 Zf |Z —]| >2 and &ei = fi, 1= 1,2, ceey T (e 3.123)

Then, for any b € A,

Bl < )
H Z;&bll < 2 max [|&I1[b] (e3.124)
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Proof. Let F € H* with ||F|| < 1. Let p; be the range projection of F(&)*F(&) in A™, i =
1,2,...,n. Note that p;p; = pjp; =0 if |i — j| > 2.

Define
F(&) F(&) -+ F(&w) F(&) F(&) -+ F(&k—1)
0 0 - 0 0 0 - 0
Co = . . . and 01 = . .
0 0o ... 0 0 0o ... 0
pbp 0 - 0 p1by 0 -~ 0
bi 0 --- 0 p3b 0 --- 0
By = p4‘ ! ) .| and By = 3. ’ ) )
parbo 0 -+ 0 pok—1bok—1 0 -+ 0

Here if n is even, then 2k = n, if n is odd, then n = 2k — 1 and &9 = 0. One estimates that

IFG b)) = HZF(&)pin (€3.125)
=1 ;
< HZ Epibll + 1| Y F(&)pib] (3.126)
i=odd i—even
= ||CBy + [CoBo|l < (IICTCl|IBf Bal)'? + (IC5 Coll|1B5 Boll) ' (¢ 3.127)
= (IICHCTHIIBi‘BlH)”2 (ICaC5 1111 B Bol)'/? (€3.128)
< (1Y FE)F&) I > v pibl)? (€3.129)
i=odd i=odd
+(| Z FE) Z b pib||) M2 (3.130)
= ” Z ez fz gz ezH”b*( Z pi)bH)l/2 (63.131)
i=odd i=odd
+(| Z e F(&)F (&) e |17 ( Z pi)b||)/? (€3.132)
< ((max [[F(&)FE) > eiHHb*bH)”2 (3.133)
i—=odd
+((max [FEFE) NI D elllb bl (3.134)
. * 1/2
< 2 max |l&[|(|jo"b]) (e3.135)
(€3.136)

It follows that

[ Zab | <2 max [1&]]1e] (e3.137)

=1

0

Remark 3.15. In the lemma above, if eq,eo, ..., €, are mutually orthogonal, then the number
2 in (&3.124) can be replaced by 1.
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Definition 3.16. Let A be a C*-algebra. An approximate identity {e, } is said to be a sequential
central approximate identity, if {e,} is a sequence and each e,, is in the center of A.

Theorem 3.17. Let A be a unital C*-algebra, let a € A\ {0} and let H = aA. Suppose that
K(H) has a sequential central approzimate identity. Then H is a projective Hilbert A-module
(with bounded module maps as morphisms).

Moreover, if Hy and Hy are two Hilbert A-modules, ¢ € B(Hjy,Hs) is surjective and if
¢ € B(H, Hy). Then, for any € > 0, there exists T € B(H, Hy) with

1T < 2]~ ol +¢
such that
poT =1

In the case that K(H) admits a central approximate identity consisting of a sequence of
projections, one can choose T € B(H, Hs) such that

1T < [le™ o gl + €.

Proof. Since aAa has a sequential central approximate identity, aAa contains a strictly positive
element x which is in the center. One may assume that a = x and sp(a) = [0,1]. Let f, €
Co((0,1]) be such that 0 < f, < 1, fu(t) = 1if t € [1/27,1], fn(t) =0 if t € [0,3/2"F2] and f(¢)
is linear in [3/2"%2,1/2"],n = 1,2, ..., and let g, € Cy((0,1]) be such that 0 < g, < 1, gn(t) = 1if
t € [1/27F2-1/2n27F2 1/27+1/2n27F2), g, (t) = 0if t & [1/27F2—1/n27+2 1/2"+1/n2"*2] and
gn(t) is linear in [1/27F2 —1/n27+2 1/27%2 —1/2p27+2] and [1/27 +1/2n27F2,1/27 +1/n2"+2],
n=172,...
Define e, = fnt1(a) — fn(a) and dy = fi(a), dy, = gn(a), n = 2,3, .... One has that

endn = dpen = e, dpdy = dpdy, =0 if [n—m|>2,n,m=1,2,.... (€3.138)

Suppose that Hy and Hs are two Hilbert A-modules and ¢ € B(Hy, Hs) is surjective. Sup-
pose also that there is ) € B(H, Hy). Denote by Hs the closure of ¢)(H). Then Hj is countably
generated.

Let p be the open projection of K(Hp) associated with the Hilbert submodule kery. Let
¢ : Hy/kerp — Hj be the one-to-one and onto bounded module map such that

¢ (m(x)) = ¢(x) for all z € H. (e3.139)

Denote by ¢~ the inverse of ¢/ which is also a bounded module map. There is z; € H; such
that

olx;) =Y(e), i=1,2,... (e3.140)

Let {pa} be an approximate identity for K (kery). By 2.12 of [15], one may view K (kerp) C
K (Hy). Then, by

|l (z)]| = iIalf (1 —pa)zil|, i=1,2,.... (e3.141)
For any € > 0. Choose p,, so that

1L = pa)aall < lIm(za)ll + /274 = [~ (i)l + €/2"7F, n=1,2,... (e3.142)
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Put &, = (1 — pn)xnd,. Note that ¢(&,) = epd, = ep, n = 1,2,.... For each n, and b € A,
define

T(fala Z&b for all b€ A. (e3.143)
i=1
By applying 3.14]
n+k

ITQ ed)| < 2, max (&I (forr (@) = fna))bl (e3.144)

— <i<
< 2019”1+ D e/27 I (Farr(a) = fr(a))bll. (3.145)

=1

Therefore, since {fy,(a) : m = 1,2,...} forms an approximate identity for aAa, for any
beaA,

k+n
Jim || ; &bl < 2(lle™ I +1) im [[(fn+x(a) = fu(a))bl| = 0. (e3.146)

Thus, one defines, for each b € B,

= &b (3.147)
n=1
By (e3.145),
IT®)| < 2™ || + €)||b]| for all b e aA. (e3.148)

So T is well-define map in B(H, Hy). One verifies that

poT(h) = @oT(D end)= cp(z £nb) (3.149)
n=1
= (D (1 = pp)andyb) = Z (e3.150)
=1 n=1
= > len)b= Zw(enb) (e3.151)
n=1 n=1
= P(b). (€3.152)
O

Corollary 3.18. Let A be a C*-algebra and let x1, o, ..,x, € A. Suppose that H; = x;A and
K(H;) admits a sequential central approrimate identity, i = 1,2, ....n. Then

H=H, ®Hy® - & Hy

is a projective Hilbert A-module (with bounded module maps as morphisms).
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